Search results for "Fiber-section element"

showing 2 items of 2 documents

Definition of a fiber macro-model for nonlinear analysis of infilled frames

2017

A common way to model infill-frame interaction is the use equivalent strut macromodels. In most cases these are compression only resistant truss elements defined with a multi-linear axial-force / axial-displacement law. The main difficulty in using this approach is to correctly calibrate such a force-displacement curve (slope of ascending and post-peak branches, critical yielding, peak and residual forces) because of the large number of variables (mechanical and elastic properties of materials) and the different possible damage mechanisms activated for the frame-infill system. Another possible way is using fiber-section elements as diagonal struts. In this case the force-displacement law is…

Infilled framesComputer scienceCorrelations; FEM; Fiber-section elements; Infilled frames; Macromodelling; Micromodelling; Stress-strain; Computational Mathematics; Computers in Earth Sciences; Geotechnical Engineering and Engineering GeologyStress-strainComputers in Earth SciencesA fibersMacroMicromodellingFEMCorrelationsbusiness.industryStress–strain curveComputational mathematicsStructural engineeringGeotechnical Engineering and Engineering GeologyFiber-section elementFinite element methodCorrelationInfilled framesComputational MathematicsNonlinear systemSettore ICAR/09 - Tecnica Delle CostruzionibusinessFiber-section elementsInfilled frameMacromodelling
researchProduct

Macroelement Model for In-Plane and Out-of-Plane Responses of Masonry Infills in Frame Structures

2018

A new macroelement model is presented in this paper for the simulation of the in-plane (IP) and out-of-plane (OOP) response of infilled frames subjected to seismic actions. The model consists of two diagonal, one horizontal, and one vertical struts. Each strut is represented by two fiber-section beam-column elements. The model is able to capture the arching action of the wall under an OOP load as well as the interaction between the IP and OOP actions. The proposed modeling approach is sufficiently simple and efficient that it can be used for the static or dynamic analysis of an entire structural system. An experimental validation has been carried out. A further numerical study performed wit…

Masonry infillConcrete and masonry structure0211 other engineering and technologies020101 civil engineering02 engineering and technologyCivil Engineering0201 civil engineeringConcrete and masonry structuresOut of planeOut-of-planeMechanics of MaterialGeneral Materials ScienceArching actionCivil and Structural Engineering021110 strategic defence & security studiesMasonry infillsbusiness.industryMechanical EngineeringFrame (networking)In-planeBuilding and ConstructionStructural engineeringMaterials EngineeringMasonryFiber-section elementInfilled framesSettore ICAR/09 - Tecnica Delle CostruzioniIn planeMechanics of MaterialsMasonry infills; In-plane; Out-of-plane; Arching action; Macromodel; Fiber-section elements; Concrete and masonry structures.Materials Science (all)businessFiber-section elementsGeologyMacromodel
researchProduct